Search results for "Upper hybrid oscillation"
showing 3 items of 3 documents
Transverse distribution of beam current oscillations of a 14 GHz electron cyclotron resonance ion source
2014
The temporal stability of oxygen ion beams has been studied with the 14 GHz A-ECR at JYFL (University of Jyvaskyla, Department of Physics). A sector Faraday cup was employed to measure the distribution of the beam current oscillations across the beam profile. The spatial and temporal characteristics of two different oscillation “modes” often observed with the JYFL 14 GHz ECRIS are discussed. It was observed that the low frequency oscillations below 200 Hz are distributed almost uniformly. In the high frequency oscillation “mode,” with frequencies >300 Hz at the core of the beam, carrying most of the current, oscillates with smaller amplitude than the peripheral parts of the beam. The result…
Nonlinear electrostatic oscillations in a cold magnetized electron-positron plasma
2017
We study the spatio-temporal evolution of the nonlinear electrostatic oscillations in a cold magnetized electron-positron (e-p) plasma using both analytics and simulations. Using a perturbative method we demonstrate that the nonlinear solutions change significantly when a pure electrostatic mode is excited at the linear level instead of a mixed upper-hybrid and zero-frequency mode that is considered in a recent study. The pure electrostatic oscillations undergo phase mixing nonlinearly. However, the presence of the magnetic field significantly delays the phase-mixing compared to that observed in the corresponding unmagnetized plasma. Using 1D PIC simulations we then analyze the damping of t…
Density and geometry of single component plasmas
2007
Abstract The density and geometry of p ¯ and e + plasmas in realistic trapping potentials are required to understand and optimize antihydrogen ( H ¯ ) formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time, using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal, and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and geometries within non-idealized, realistic trapping potentials.